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摘要

很早之前人们就已熟知宏观世界的运动规律，例如牛顿运动定律等；后来将其总结、普适化成
为分析力学，其中哈密顿力学及哈密顿正则方程是研究经典力学的一种很普适、方便的途径；而后
来人们又发现在微观世界中，经典力学不再完全成立，进而发展了量子力学的理论体系；从薛定谔
绘景到海森堡绘景，人们逐渐发现，量子力学与经典力学并不是没有关系；反而，量子力学中的某
些基本规律可以通过经典力学启发得到。本文就来探讨将经典力学中的哈密顿力学体系延拓到量
子力学基本规律的方式方法，但同时也顾及经典力学与量子力学的不同之处，即经典力学对量子
力学的局限性；此外，我们学习并总结、思考费曼路径积分的思想，来探索如何将经典力学中的作
用量理论运用到量子力学中的传播子、路径积分当中。
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1 正则量子化

正则量子化是量子力学中的一个基本概念，涉及到将经典系统量子化的过程，以量子力学
的方式来描述它们。反过来，这些量子化的系统将减少到他们的经典对应的宏观限制。在本节
中，我们首先注意到哈密顿力学中的泊松括号与海森堡绘景中的交换子之间的相似性。然后定
义了正则量子化的过程，指出了它们的缺点。

1.1 分析力学的正则形式

经典力学中，L(qk, q̇k)(k = 0, 1, . . . , N) 代表 N 自由度系统的拉格朗日量，这里 qk 代表系
统的广义坐标。对于每个广义坐标，我们都可以定义与其相对应的广义动量 pk，其定义为：

pk =
∂L
∂q̇k

在哈密顿正则理论中，系统的动力学特征由哈密顿量 H(qk, pk) 所表征，其中 H 是 qk 和
pk 的函数，其定义为：

H(qk, pk) =

N∑
k=1

pkq̇k − L(qk, q̇k)

这种变换被称为拉格朗日量的勒让德变换。在哈密顿正则理论中，系统的运动方程被称为
哈密顿正则方程，其具体形式为：

q̇k =
∂H
∂pk

ṗk = −∂H
∂qk

现在我们引入泊松括号；力学量 A 和 B 的泊松括号定义 [1] 为：

{A,B}PB =

N∑
k=1

(
∂A

∂qk

∂B

∂pk
− ∂A

∂pk

∂B

∂qk

)
(1.1)

我们不难发现：

{qi,H}PB =

N∑
k=1

(
∂qi
∂qk

∂H
∂pk

− ∂qi
∂pk

∂H
∂qk

)
=
∂H
∂pi

{pi,H}PB =

N∑
k=1

(
∂pi
∂qk

∂H
∂pk

− ∂pi
∂pk

∂H
∂qk

)
= −∂H

∂qi

因此，当利用泊松括号表示时，哈密顿正则方程的形式简化为：

q̇k =
∂H
∂pk

= {qk,H}PB ṗk = −∂H
∂qk

= {pk,H}PB (1.2)
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上式反映出时间变化率等于自己和哈密顿量的泊松括号这么一个特征。事实上，这个特征
不是广义坐标和广义动量所独有的；我们考虑任意以 qk，pk 和 t为自变量的力学量函数 A，有：

Ȧ(qk, pk, t) =

N∑
k=1

(
∂A

∂qk
q̇k +

∂A

∂pk
ṗk

)
+
∂A

∂t

=

N∑
k=1

(
∂A

∂qk

∂H
∂pk

− ∂A

∂pk

∂H
∂qk

)
+
∂A

∂t

= {A,H}PB +
∂A

∂t
(1.3)

方程1.3称作为推广的哈密顿方程。如果 A 不明确依赖时间（大多数变量是这种情况），则
方程将简化为以下的形式。

Ȧ(qk, pk) = {A,H}PB (1.4)

最后，我们再来算一下广义坐标和广义动量之间（或自己）的泊松括号，结果如下：

{xi, xj}PB = 0 (1.5a)

{pi, pj}PB = 0 (1.5b)

{xi, pj}PB = δij (1.5c)

1.2 从分析力学到量子力学

经典力学是一种自洽的理论。它的核心原则，例如牛顿定律或哈密顿方程，构成了一套完
备的逻辑体系，其理论本身并不自相矛盾。1然而，经典力学的自洽性并不能保证其导出的结果
与实验观察相一致。我们必须大胆做出猜测并调整经典力学的框架，使它与实验结论相符合。以
下的经典力学量子化，被称为“正则量子化”。为了将经典力学进行量子化，假设所有的变量
将不再单纯是一种函数，而被赋予算符的含义。除此之外，在任何经典力学的方程或恒等式中，
我们将函数之间的“泊松括号”替换为算符之间的“对易括号”与 ih̄ 的商，从而变为新的方程
或恒等式，即：

{A,B}PB −→ 1

ih̄
[Â, B̂] (1.6)

其中，算符之间的“对易括号”定义为：

[Â, B̂] = ÂB̂ − B̂Â

1不可能从经典力学推出量子力学。
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因此，若将方程 1.5a, 1.5b, 1.5c 和 1.3进行正则量子化，我们得到：

[x̂i, x̂j ] = 0 (1.7a)

[p̂i, p̂j ] = 0 (1.7b)

[x̂i, p̂j ] = ih̄δij (1.7c)

以及
dÂ

dt
=
i

h̄
[Ĥ, Â] +

∂Â

∂t
(1.8)

我们就得到了海森堡方程的精确表达式；在海森堡绘景中，态矢量不随时间变化，而算符
随时间的演化由上式给出。“可观测量”代表一个物理系统中可测量的物理特性。在经典力学中，
系统的可观测量只是一个数值（例如位矢的 x 分量等）；然而，在量子力学中，任何一个可观
测量都对应一个厄米算符。从式1.7c中可以看出，不同算符之间的对易括号通常不等于 0，即其
通常不对易（算符乘积的结果与其乘积的先后顺序有关）。由于矩阵的乘积通常不满足交换律，
即两个矩阵相乘，其结果与乘积的顺序有关；由此我们可以看出，有时将算符表示成矩阵的形
式是合理的。
量子力学中我们引进态矢量（矢量的名称是因为任何态都可以展开成希尔伯特空间中某一

组正交归一完备基的线性组合，其中系数可以排成一个列矢量；因此若选定一组基，归一化后
的态与归一化后的列矢量一一对应），其包含给定时间下量子系统的全部特征。前面介绍的算符
（在这组给定基上的投影矩阵）要作用在态矢量上（算符矩阵乘以列矢量得到新的列矢量，即新
的态）。任何可观测量的测量值依赖于相应算符（矩阵）的本征值。由于自然界中的可观测量的
测量值都是实数（虚数是人类的工具而已，不是大自然的测量结果），量子力学中表示可观测量
的算符必定是厄米算符。

1.3 从海森堡绘景到薛定谔绘景

前面提到，在海森堡绘景中，算符按海森堡方程随时间演化，而态不随时间变化。考虑算
符不显含时间的情况，海森堡方程变为：

dÂ

dt
=
i

h̄
[Ĥ, Â] =

i

h̄
(ĤÂ− ÂĤ)

该微分方程的解为：

Â(t) = e
i
h̄ ĤtÂ(0)e−

i
h̄ Ĥt = (e

i
h̄ Ĥt)Â(0)(e

i
h̄ Ĥt)†

在量子力学中，某个态 ψ 在特定可观测量 A 下的期望值 A，是相应的算符 Â 的本征态的
本征值按态 ψ 在该本征态上的概率加权平均的结果，其表达式简化后为：
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A = 〈ψ| Â |ψ〉

回到海森堡绘景，该绘景下描述的量子态 ψ 在可观测量 A 上的期望值随时间的变化为：

A(t) = 〈ψ| Â(t) |ψ〉 = 〈ψ| e i
h̄ ĤtÂ(0)e−

i
h̄ Ĥt |ψ〉

由于态矢量 ψ = ψ(0) 不随时间变化，根据狄拉克符号的规则，上式又可写为：

A(t) = 〈e− i
h̄ Ĥtψ(0)| Â(0) |e− i

h̄ Ĥtψ(0)〉

现在改用薛定谔绘景来描述；薛定谔绘景的含义是：态矢量随时间变化，但算符 Â = Â(0)

不随时间变化；然而，由于期望值是物理系统的基本特征，其在任意时刻的数值不会因为绘景
选择的不同而变化；用薛定谔绘景描述时，有

A(t) = 〈ψ(t)| Â(0) |ψ(t)〉

因此薛定谔绘景下，态矢量随时间的变化为：

|ψ(t)〉 = e−
i
h̄ Ĥt |ψ(0)〉

将其写成等价的微分方程的形式，我们就得到了含时薛定谔方程：

ih̄
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 (1.9)

这说明，薛定谔绘景和海森堡绘景等价；由于算符和态都是人类借以描述量子力学的工具，
而真正不能改变的可观测量的测量值只与期望值有关；正是因为此原因，才容留了不同绘景同
时出现的自由度。

1.4 例子

1.4.1 线性谐振子

现在，我们来考虑一个经典的线性谐振子，其弹性系数为 k，设 x 为质点在 t 时刻的位置。
我们知道，此时系统的拉格朗日量为质点动能与势能之差，即：

L = T − V =
1

2
mẋ2 − 1

2
kx2

现在，我们来求哈密顿量。我们首先要计算出与广义坐标 x 共轭的广义动量 p，其为

p =
∂L

∂ẋ
= mẋ −→ ẋ =

p

m
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H = pẋ− L = p
( p
m

)
− 1

2
m
( p
m

)2

+
1

2
kx2 =

p2

2m
+

1

2
kx2

我们现在来将结果进行量子化：我们把哈密顿量里的坐标、动量变量换成算符的形式，即：

Ĥ =
p̂2

2m
+

1

2
kx2 =

p̂2

2m
+
mω2x̂2

2

我们现在来用海森堡绘景：其中算符随时间的变化用海森堡方程表示，即：

dx̂

dt
=
i

h̄
[Ĥ, x̂] +

∂x̂

∂t
=

p̂

m
dp̂

dt
=
i

h̄
[Ĥ, p̂] +

∂p̂

∂t
= −mω2x̂

通过解这两个相互耦合的微分方程，我们得到：

x̂(t) = x̂0cos(ωt) +
p̂0
mω

sin(ωt)

p̂(t) = p̂0cos(ωt)−mωx̂0sin(ωt)

我们发现，这与经典谐振子的解相同，这是因为可以推导出：把经典力学运动方程中的坐
标、动量和势能（力）等变量替换成量子力学中的期望值，其在量子力学中成立。而海森堡绘
景中，态不随时间变化，故海森堡绘景中算符满足的方程与经典力学相同，算符随时间变化的
解也就与经典力学中对应变量随时间变化的解相同。

1.5 正则量子化的局限性

1.5.1 算符不对易的哈密顿量

与经典力学中的变量不同，量子力学中的任意两个厄米算符（表示可观测量的算符）A 和
B 很多时候并不对易（相容），也就是说：

[Â, B̂] 6= 0

如果我们只是将形式较为简单的哈密顿量做正则量子化时（例如哈密顿量只是坐标、动量
的多项式，且不含坐标与动量的乘积项），这种问题不会出现。然而，如果经典意义下的哈密顿
量包含量子力学中不对易的两个参量的乘积，那么我们在做正则量子化时，即将变量替换成算
符时，必须要考虑算符乘积的顺序问题（算符乘积不像代数乘法一样满足交换律，两算符不对
易的情况下，其交换顺序后乘积结果会改变）。例如，若某经典情形下哈密顿量有如下形式：

H = px

由于经典变量的乘积有交换律，因此我们并不知道量子化后的哈密顿量应该写成 Ĥ = p̂x̂

还是 Ĥ = x̂p̂ ，或者不同系数下两者的组合。
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然而考虑到量子化后的哈密顿量必须是厄米算符，即其厄米共轭是它自己；因此由于 p̂ 和
x̂ 都是厄米算符（可观测量），因此量子化后的哈密顿量必定要写成

Ĥ =
1

2
(p̂x̂+ x̂p̂)

1.5.2 无经典对应的情况

尽管很多量子力学中的算符在经典力学中都有对应的可观测量，例如位置、动量、能量等
等，然而在量子力学中有一些其他的现象是在经典力学中是没有直接对应的。
最直接的一个例子就是量子力学中的“自旋”。量子力学中，粒子（例如电子）有一种叫做

“自旋”的内禀特征。最早的电子自旋模型试图经典力学中的“自转”来描写“自旋”；但后来
理论分析发现，若真的是自转引起的自旋，那么对应某些粒子，其最大转动速度超过光速，违
背狭义相对论；因此，“自旋”是纯量子力学参量，而没有任何经典对应。

1.5.3 考虑电子自旋的情况

对于一般的粒子，若考虑自旋，其哈密顿量的写法会很复杂，甚至不能从经典的哈密顿量
中直接推导出来。

1.5.4 Groenewold-Van 定理

对易括号和泊松括号之间的一般系统对应关系已被证明不能始终成立。这个叫做Groenewold-
Van 定理。考虑到：

x2p2 =
1

9
{x3, p3}PB =

1

3
{x2p, xp2}PB

由量子化条件1.6，得到：

1

9
[x̂3, p̂3] =

1

3
[x̂2p̂, x̂p̂2]

以上式子并不成立，方程1.6并不能所有情况下使用。然而，这种对应关系确实存在于对易
括号和 Moyal 括号（泊松括号的变形）之间。简而言之，当可观测量被描述为相空间上的函数
时，Moyal 括号是描述量子力学相空间公式中可观测量对易关系的方法。

1.6 Moyal 括号与对易子

1.6.1 相空间绘景

前文提到，量子力学有很多不同的表述规则或理论体系，我们称之为“绘景”。例如我们之
前介绍过的薛定谔绘景和海森堡绘景就是两种不同的体系。由于物理规律是不变的，因此所有
“绘景”在数学上是等价的，我们运用不同“绘景”来描述的原因是，不同的“绘景”有各自的
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优点。现在，我们来介绍另一种“绘景”——相空间绘景。在相空间绘景中，坐标 x 和动量 p

为地位相同的共轭参量，所有可观测量都用它们的函数来表示。不难发现，相空间绘景中“函
数”代替了“算符”；而后面将会介绍，“星积”代替了原本算符的乘积（进入表象中为矩阵的
乘法）。
通过取代了算符的表示（避免了不相容的算符之间的乘法不能交换的情况，而这种情况是

经典力学中所没有的），相空间绘景对量子世界的表述使得量子力学与经典世界中的哈密顿力
学更加相似。
接下来介绍Weyl变换，它将某一特定可观测量在相空间绘景中的函数表示 f (q, p)和其在

海森堡绘景描述的希尔伯特空间中的算符表示 Φ̂[f ] 之间的关系表达出来，体现了相空间绘景
与我们之前所使用的海森堡绘景的联系。Weyl 变换的表达式为：

Φ̂[f ] =
1

(2π)2

∫∫∫∫
f(q, p)

(
ei(a(q̂−q)+b(p̂−p))

)
dq dp da db (1.10)

同理，Wigner 变换是 Weyl 变换的逆变换，它将可观测量在希尔伯特空间中的算符表示
Φ̂[f ] 变为相空间绘景中的函数表示 f (q, p)，其表达式为：

f(q, p) = 2

∫ ∞

−∞
dy e−2ipy/h̄ 〈q + y| Φ̂[f ] |q − y〉 (1.11)

1.6.2 星积

在相空间绘景中，海森堡绘景中算符之间的乘积用“星积”来代替。星积是给定流形上函
数点积的非交换变形。这里“非交换”指两个函数的“星积”结果与其运算顺序有关。
现在来介绍双线性映射：假设 V，W 和 X 分别代表三个矢量空间。如下定义一个从 V ×W

到 X 的映射
B : V ×W → X

若满足对 ∀w ∈ W, v 7→ B(v, w) 是一个从矢量空间 V 到矢量空间 X 的线性映射，且对 ∀v ∈
V,w 7→ B(v, w) 是一个从矢量空间 W 到矢量空间 X 的线性映射，则映射 B 是一个双线性映
射。
给定流形 M 上的星积是一个双线性映射

C∞(M)[[ϵ]] × C∞(M)[[ϵ]] → C∞(M)[[ϵ]]

(f, g) 7→ f ⋆ g

其一般情况下可展开为：

f ⋆ g = fg +

∞∑
i=1

ϵiBi(f, g)

这里 Bi 表示一种双线性算子。
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1.6.3 Moyal 星积

Moyal 星积是一种特殊的星积。在 Moyal 星积中，ϵ 的取值为 ih̄/2，双线性算子 Bi 是一
个由泊松双矢给出的双微分算子。即

ϵ =
ih̄

2

Bi =
1

n!
Πn(f, g)

Πn(f, g) =

n∑
k=0

(−1)k
(
n

k

)(
∂k

∂pk
∂n−k

∂qn−k
f

)
×
(
∂n−k

∂pn−k

∂k

∂qk
g

)
因此，Moyal 星积的具体展开式为：

f ⋆ g = fg +

∞∑
n=1

1

n!

(
ih̄

2

)n

Πn(f, g) (1.12)

此时有一点需要注意，在量子力学中通常 h̄ 相对于其他参量不算小，但这种形式上用 h̄ 展
开的方法依然适用，这与微扰理论中的方法类似。

1.6.4 Moyal 括号和经典极限

Moyal 括号的定义是将 Moyal 星积做反对称化，即：

{{f, g}} =
1

ih̄
(f ⋆ g − g ⋆ f) (1.13)

将 1.12 式代入 1.13式，可以得到：

{{f, g}} =
1

ih̄
(f ⋆ g − g ⋆ f)

=
1

ih̄

[
fg +

∞∑
n=1

1

n!

(
ih̄

2

)n

Πn(f, g)− fg +

∞∑
n=1

1

n!

(
ih̄

2

)n

Πn(g, f)

]

=
1

ih̄

[
∞∑

n=1

1

n!

(
ih̄

2

)n

(Πn(f, g)−Πn(g, f))

]
= {f, g}PB +O(h̄2)

若取经典极限，则 h̄→ 0，显然此时 Moyal 括号的形式回到经典力学中的泊松括号，即用
相空间绘景描述的物理世界与经典力学是自洽的。

2 路径积分量子化

量子力学的路径积分表述与物理学家理查德·费曼深入联系。它提供了另一种理解量子系
统行为的方法。费曼的想法是，粒子可能采取的所有可能路径都可以促进，幅度与该路径沿该
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路径所经历的作用量（与拉格朗日量相关的数量）相关。[2] 通过叠加这些贡献，可以获得粒子
的概率分布。该方法在量子场理论中特别强大，也同时提供了一种工具来了解量子世界的基本
原理。

2.1 从薛定谔方程到路径积分量子化

我们从含时薛定谔方程开始，其形式如下

ih̄
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 (2.1)

态矢量 |ψ〉 有如下形式的解：

|ψ(t)〉 = e−
i
h̄ Ĥt |ψ(0)〉 (2.2)

因此，我们定义从 t 时刻到 t0 时刻的时间演化算符为：

U(t; t0) = e−
i
h̄ Ĥ(t−t0) (2.3)

则初始处在 (x, t)，末态在 (x′, t′) 的概率幅（又称传播子）为：

K(x′, t′;x, t) = 〈x′|U(t′; t) |x〉 (2.4)

一种得到路径积分表达式的方法是：把总时间均匀分成 N 个很小的时间段2 。现在我们按
如下方式 “切分”时间：

tn = nε, t = Nε, n = 0, 1, . . . , N (2.5)
2后面会看到，这种方法可以让我们忽略动能算符和势能算符的不对易性
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因此对于时间演化算符 U(t; 0)，传播子 K(x′, t;x, 0) 的表达式可以写成：

K(x′, t;x, 0) = 〈x′|U(t; 0) |x〉 (2.6)

= lim
ε→0

〈xN | e− i
h̄ ĤεN |x0〉

= lim
ε→0

〈xN | e− i
h̄ Ĥε · e− i

h̄ Ĥε . . . e−
i
h̄ Ĥε |x0〉

= lim
ε→0

〈
xN

∣∣∣∣e− i
h̄ Ĥε

∫
dxN−1

∣∣∣∣xN−1

〉〈
xN−1

∣∣∣∣
e−

i
h̄ Ĥε

∫
dxN−2

∣∣∣∣xN−2

〉〈
xN−2

∣∣∣∣
...

e−
i
h̄ Ĥε

∫
dx2

∣∣∣∣x2〉〈x2∣∣∣∣
e−

i
h̄ Ĥε

∫
dx1

∣∣∣∣x1〉〈x1∣∣∣∣e− i
h̄ Ĥε

∣∣∣∣x0〉
= lim

ε→0

∫
dxN−1

∫
dxN−2 · · ·

∫
dx2

∫
dx1[

〈xN | e− i
h̄ Ĥε |xN−1〉 〈xN−1| e−

i
h̄ Ĥε |xN−2〉 . . . 〈x2| e−

i
h̄ Ĥε |x1〉 〈x1| e−

i
h̄ Ĥε |x0〉

]
(2.7)

现在我们来关注无穷小时间下的传播子，将稳定系统哈密顿量分解成动能和势能项：

〈xn+1| e−
i
h̄ Ĥε |xn〉 = 〈xn+1| e−

i
h̄ (T̂+V̂ )ε |xn〉 (2.8)

注意到，尽管如下两个式子不等价，我们可以证明当 ε 趋向于零 0，它们具有相同的值。

e−
i
h̄ (T̂+V̂ )ε 6= e−

i
h̄ T̂ εe−

i
h̄ V̂ ε, (2.9a)

e−
i
h̄ (T̂+V̂ )ε ≈ e−

i
h̄ T̂ εe−

i
h̄ V̂ ε, (ε→ 0) (2.9b)

证明：考虑方程2.9a的左边。

e−
i
h̄ (T̂+V̂ )ε = 1− i

h̄
(T̂ + V̂ )ε+

1

2

[
− i

h̄
(T̂ + V̂ )ε

]2

+ . . .

= 1− i

h̄
(T̂ + V̂ )ε− 1

2h̄2

(
T̂ 2 + T̂ V̂ + V̂ T̂ + V̂ 2

)
ε2 + . . . (2.10)

然后考虑方程2.9a的右边。

e−
i
h̄ T̂ εe−

i
h̄ V̂ ε =

(
1− i

h̄
T̂ ε− 1

2h̄2
T̂ 2ε2 + . . .

)(
1− i

h̄
V̂ ε− 1

2h̄2
V̂ 2ε2 + . . .

)
= 1− i

h̄
(T̂ + V̂ )ε− 1

2h̄2

(
T̂ 2 + 2T̂ V̂ + V̂ 2

)
ε2 + . . . (2.11)
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容易看出方程2.10和方程2.11并不等价。然而，当 ε 趋向于 0，高阶的 ε 项就会消失。如果
只保留一次项，就得到：

e−
i
h̄ (T̂+V̂ )ε ≈ e−

i
h̄ T̂ εe−

i
h̄ V̂ ε ≈ 1− i

h̄
(T̂ + V̂ )ε

于是证明了方程2.9b。利用这个结果，我们将可以把无穷小时间下的传播子2.8写成：

〈xn+1| e−
i
h̄ (T̂+V̂ )ε |xn〉 = 〈xn+1| e−

i
h̄ T̂ εe−

i
h̄ V̂ ε |xn〉

= 〈xn+1| e−
i
h̄ T̂ εe−

i
h̄V (xn)ε |xn〉

= 〈xn+1| e−
i
h̄ T̂ ε |xn〉 e−

i
h̄V (xn)ε

=

∫
dp

〈
xn+1

∣∣∣e− i
h̄

p̂2

2m ε
∣∣∣p〉〈p∣∣∣xn〉 e− i

h̄V (xn)ε

=

∫
dp 〈xn+1|p〉 〈p|xn〉 e−

i
h̄

p2

2m εe−
i
h̄V (xn)ε

=

∫
dp 〈xn+1|p〉 〈xn|p〉∗ e−

i
h̄

p2

2m εe−
i
h̄V (xn)ε

=

∫
dp

(
1√
2πh̄

e
i
h̄pxn+1

)(
1√
2πh̄

e−
i
h̄pxn

)
e−

i
h̄

p2

2m εe−
i
h̄V (xn)ε

=
1

2πh̄
e−

i
h̄V (xn)ε

∫
dp e−

iε
2mh̄p2+ i

h̄ (xn+1−xn)p

=
1

2πh̄
e−

i
h̄V (xn)ε

∫
dp e−

iε
2mh̄ (p+... )2+

i(xn+1−xn)2m

2h̄ε

=
1

2πh̄
e−

i
h̄V (xn)εe

i(xn+1−xn)2m

2h̄ε

√
2mπh̄

iε

=

√
m

2πh̄iε
e

im
2h̄ε (xn+1−xn)

2− i
h̄V (xn)ε

=
( m

2πh̄iε

) 1
2

e
iε
h̄

[
m
2

(
xn+1−xn

ε

)2
−V (xn)

]
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在推导的第六行中，〈x|p〉 是位置表象里的动量本征态。[3] 将刚获得的结果代入2.7，得到：

〈x′|U(t; 0) |x〉 = lim
ε→0

∫
dxN−1

∫
dxN−2 · · ·

∫
dx2

∫
dx1[

〈xN | e− i
h̄ Ĥε |xN−1〉 〈xN−1| e−

i
h̄ Ĥε |xN−2〉 . . . 〈x2| e−

i
h̄ Ĥε |x1〉 〈x1| e−

i
h̄ Ĥε |x0〉

]
= lim

ε→0

∫
dxN−1

∫
dxN−2 · · ·

∫
dx2

∫
dx1[( m

2πh̄iε

) 1
2

e
iε
h̄

[
m
2

(
xN−xN−1

ε

)2
−V (xN−1)

]][( m

2πh̄iε

) 1
2

e
iε
h̄

[
m
2

(
xN−1−xN−2

ε

)2
−V (xN−2)

]]

. . .

[( m

2πh̄iε

) 1
2

e
iε
h̄

[
m
2 (

x2−x1
ε )

2−V (x1)
]] [( m

2πh̄iε

) 1
2

e
iε
h̄

[
m
2 (

x1−x0
ε )

2−V (x0)
]]

= lim
ε→0

( m

2πh̄iε

)N
2

∫
dxN−1

∫
dxN−2 · · ·

∫
dx2

∫
dx1 e

iε
h̄

N−1∑
n=0

[
m
2

(
xn+1−xn

ε

)2
−V (xn)

]

= lim
ε→0

( m

2πh̄iε

)N
2

∫
dxN−1

∫
dxN−2 · · ·

∫
dx2

∫
dx1 e

i
h̄

t∫
0
[ 12mẋ2−V (x)]dt′

= N
∫

Dx(t′) e
i
h̄

t∫
0

Ldt′

= N
∫

Dx (t′) e
i
h̄S[x(t′)]

=

∫
ϕ[x(t′)]Dx(t′)

因此，我们得到了传播子的很简洁的表达式：

K(x, t; 0, 0) =

∫
ϕ [x(t′)]Dx(t′) (2.12)

其中：

• K(x′, t′;x, t) 是粒子从 (x, t) 到 (x′, t′) 的概率幅。

• 概率由概率幅的平方模给出。P (x′, t′;x, t) = ‖K(x′, t′;x, t)‖2

• 概率幅由空间中所有路径的贡献 ϕ [x(t′)] 相加得出。Dx 代表着路径积分。

• 每个路径贡献 ϕ [x(t′)] 的大小都是 N，乘上一个相位 e
i
h̄S，S 是沿路径的拉格朗日量的时

间积分给出的作用量。

2.2 经典极限

经典与量子的区别在于尺度；在经典情况下，相应的尺寸、质量、时间等都非常大，因此
作用 S 的“微小”变化会导致 S

h̄
发生非常大的变化。我们将讨论量子力学如何在经典尺度上
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重现经典力学的结果。[2]

2.2.1 当端点位于最小作用量的路径上

考虑 K(b, a)，粒子从 a 出发到达 b 的概率幅度。K(a, b) 是从 a 到 b 的所有可能路径的
贡献之和。几乎所有这些路径都不对应于作用量的极值：即使对于两个看起来几乎相同的路径，
由于 S

h̄
大，e i

h̄S 的值也就非常不同。相反，在 δS ≈ 0 的区域附近，作用量变化非常缓慢，路
径将具有相似的相位 e

i
h̄S。来自这些路径的贡献将相加，而来自其他路径的贡献将抵消。因此，

粒子从 a 到 b 的经典轨迹遵循最小作用量原理：δS = 0。

2.2.2 当端点不在最小作用量的路径上

再次考虑 K(b, a)，但在这种情况下，b 不在 δS = 0 的路径上。没有一条路径是作用量的
极值，于是 S

h̄
的值在任何地方都快速变化。所有贡献都抵消了，并且 K(b, a) = 0，P (b, a) =

‖K(b, a)‖2 = 0。从经典角度来看，粒子不可能从 a 运动到 b。

2.3 连续事件

2.3.1 两个事件

再次考虑一个从 a 运动到 b 的粒子。令 c 为粒子路径上的一个点。因此：

S[b, a] = S[c, a] + S[b, c]

Nb,a = Nc,aNb,c

于是：

K(b, a) = Nb,a

∫ b

a

e
i
h̄S[b,a]Dx(t) = Nc,aNb,c

∫ b

a

e
i
h̄S[c,a]e

i
h̄S[b,c]Dx(t)

注意，c 可以是任何位置：

K(b, a) =

∫ ∞

−∞

[∫ c

a

Nc,ae
i
h̄S[c,a]Dx(t)

] [∫ b

c

Nb,ce
i
h̄S[b,c]Dx(t)

]
dxc

=

∫ ∞

−∞
K(c, a)K(b, c)dxc (2.13)

从点 a 到点 b 的概率幅是所有 c 值的 [从 a 到 c 的概率幅与从 c 到 b 的概率幅的乘积] 的
总和。注意，相乘的是概率幅，而不是概率。这与经典力学不同，要知道在经典力学中，概率
相乘的假设是合理的。在量子世界中：

P (b, a) 6=
∫ ∞

−∞
P (b, c)P (c, a)dxc (2.14)
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从数学上看，原因很容易理解。概率是通过概率幅平方模得出的，如果对方程 2.13求平方，
很明显它并不能推出方程 2.14。
概率不能直接相乘的（非数学）原因是由于一个经典假设不在量子世界里成立：从 a 到达

b，粒子需要经过的点 c有确定位置。正如费曼指出的那样 [4]，如果在 c处对粒子进行测量，则
方程 2.14 就将会成立。

2.3.2 多个事件

方程 2.13 可以推广到多个事件。

K(b, a) =

∫
· · ·

∫ ∫
K(b,N − 1) . . .K(2, 1)K(1, a)dx1dx2 . . . dxN−1

这个方程其实在推导概率幅的形式时用过。（方程 2.12）

2.4 路径积分表述的缺点

路径积分公式让物理学家能够理解为什么经典力学遵循最小作用量原理。然而，该理论也
存在许多缺点。其中最关键的缺点之一是拉格朗日量并不总是 L = 1

2
mẋ2 −V (x) 的形式，因此

方程 2.12 中的证明有时候是不正确的。在这些情况下，路径的概率幅不再由 e
i
h̄S 给出。尽管

如此，概率幅仍然存在，组合概率幅仍然由方程 2.13 给出。费曼路径积分在量子场论中有着重
要的应用。
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