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摘要
本文详细分析了复标量克莱因 –戈登场，首先从作用量原理出发。从作用量导出共轭动量和典型对

易关系，进而得到理论的哈密顿形式。随后展示了海森堡运动方程能够重现克莱因 –戈登方程，确认了
与原始动力学的一致性。通过引入产生算符和湮灭算符对哈密顿量进行对角化，揭示该理论描述了两种
质量均为 m 的粒子。与全局 U(1) 对称性相关的守恒电荷以模算符形式表达，从而可以直接计算每种
粒子的电荷。分析进一步推广到两个相同复标量场的情况，此时诺特定理产生了四个守恒电荷。其中一
个推广了原来的 U(1) 电荷，剩余三个遵循 SU(2) 李代数的对易关系。最后，将框架推广到 n 个相同
复标量场，凸显出全局 SU(n) 对称性的出现。

关键词：量子场论，复标量场，克莱因 –戈登方程，典型量子化，海森堡描绘，产生与湮灭算符，守恒电荷，诺特定理，SU(2) 对称性，全
局对称性，同位旋，非阿贝尔，双重态，多重态

ABSTRACT
This paper presents a detailed analysis of the complex scalar Klein-Gordon field, beginning

with the action principle. From the action, the conjugate momenta and canonical commutation
relations are derived, leading to a Hamiltonian formulation of the theory. The Heisenberg equations
of motion are then shown to reproduce the Klein-Gordon equation, confirming consistency with
the original dynamics. The Hamiltonian is diagonalised through the introduction of creation and
annihilation operators, revealing that the theory describes two species of particles, each with mass
m. A conserved charge associated with the global U(1) symmetry is expressed in terms of the mode
operators, allowing a direct calculation of the charge of each particle type. The analysis is extended
to the case of two identical complex scalar fields, where Noether’s theorem yields four conserved
charges. Among these, one generalises the original U(1) charge, while the remaining three obey the
commutation relations of the SU(2) Lie algebra. Finally, the framework is generalised to n identical
complex scalar fields, highlighting the emergence of a global SU(n) symmetry.

Keywords: Quantum field theory, Complex scalar field, Klein-Gordon equation, Canonical quantisation, Heisenberg picture,
Creation and annihilation operators, Conserved charge, Noether’s theorem, SU(2) symmetry, Global symmetry, Isospin, Non-
Abelian, Doublet, Multiplet
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1 引言

在物理学中，有一个强大且统一的思想，称为作用量原理 (action principle)。我们不直接写下运动方
程，而是定义一个单一的数学对象——作用量 (action)——它作为一个整体编码了系统的行为。作用量为
系统随时间演化的每一种可能方式赋予一个数值。事实证明，自然界会选择使这个数值驻定 (stationary)
的路径——这意味着当我们对路径进行微小调整时，该数值不会改变。从某种意义上说，这仿佛自然界
是“懒惰的”，更喜欢需要最少作用量的路径，就像水会找到最快的下山方式一样。

这个思想最早出现在经典问题中，例如最速降线 (brachistochrone) 问题（寻找在重力作用下的最快
路径），事实证明，它具有惊人的普适性。它不仅适用于下落的物体和摆动的钟摆，也适用于量子场和基
本粒子。

在本文中，我们将作用量原理应用于复标量克莱因 –戈尔登场 (complex scalar Klein-Gordon field)。
这个场描述了遵循爱因斯坦著名的能量、动量和质量关系的无自旋粒子：

E2 = p2 +m2.

为了将其转化为一个波动方程，我们使用量子力学的基本规则：用算符替换能量和动量。即，

E → i
∂

∂t
, p → −i∇.

代入爱因斯坦的公式，得到克莱因 –戈尔登方程 (Klein-Gordon equation)：(
− ∂2

∂t2
+∇2 −m2

)
φ(x) = 0,

该方程描述了场 φ(x) 如何演化。但是，我们不直接从这个方程出发，而是从产生它的作用量开始。这种
方法更容易揭示更深层次的结构——例如守恒律、对称性以及场的量子行为。

我们从作用量出发，计算场的共轭动量 (conjugate momentum)，它扮演着类似于经典力学中动量的
角色：它告诉我们拉格朗日量对场随时间变化的依赖程度。有了它，我们构建哈密顿量 (Hamiltonian)，
它给出系统的总能量。为了从拉格朗日量得到哈密顿量，我们使用一种称为勒让德变换 (Legendre trans-
formation) 的标准技术，它将描述从速度转换到动量。

一旦有了哈密顿量，我们用它写下海森堡运动方程 (Heisenberg equations of motion)，该方程描述
了量子算符如何随时间演化。这些方程最终精确地再现了克莱因 –戈尔登方程，证实了基于作用量的方
法给出了正确的物理。

为了更详细地研究场的能量含量，我们使用傅里叶变换 (Fourier transform) 将场表示为动量模式
(momentum modes) 的总和。这是傅里叶级数在连续系统中的扩展形式。当以这种方式书写时，场看起
来就像是一组无限多个量子简谐振子——每一个动量模在空间的每一个点上各对应一个振子。

量子简谐振子 (Quantum Harmonic Oscillator) 是量子物理中的一个核心例子。尽管它与经典简谐
振子 (Simple Harmonic Oscillator) 具有相同的势能形状（就像弹簧上的质量块），但二者在本质上是不
同的。在量子情形下，粒子不能拥有任意能量；相反，其能量被限制为离散的能级。这种能级的离散性是
量子系统的显著特征。更令人惊讶的是，最低可能的能量并非零。即使在基态——运动最少的状态——
中，量子粒子仍然保留着一定的能量，这被称为零点能 (zero-point energy)。换言之，量子粒子在谐振势
阱中不可能完全静止。要在能级之间跃迁，系统必须吸收或释放固定量的能量，这些跃迁由称为升降算
符（也叫阶梯算符, ladder operator）的特殊数学工具来描述。
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图 1: 量子猫攀爬能量阶梯：每向上一步，代表产生算符添加一个能量量子；每向下
一步，代表湮灭算符移除一个能量量子。在最底端，猫无法再往下——基态之下已
无量子态可寻。

场的每一个动量模都表现得像一个量子简谐振子，并且与一对升降算符相对应：产生算符 (creation
operator) a†p 用来添加一个动量为 p的粒子，湮灭算符 (annihilation operator) ap 用来移除一个粒子。在
真空态 (vacuum state)（即没有粒子的状态）上作用产生算符就会产生一个粒子。关键是，即便在没有任
何粒子的情况下，每个模依然会由于量子性质而贡献一小部分能量——零点能。

当我们将这种模式展开代入哈密顿量时，我们得到了以产生和湮灭算符表示的场的总能量表达式。
不出所料，能量包含了一个来自我们可能产生的所有粒子的项——但它还包含一个额外的项：来自每种
模式的所有零点能的无限总和。这被称为真空能 (vacuum energy)——即空无空间的能量。

这个真空能带来了深刻而令人困惑的后果。根据广义相对论——我们目前最成功的引力理论——能
量会使时空发生弯曲。具体来说，均匀分布的真空能会以一种特殊方式弯曲时空，从而导致宇宙空间以
加速度扩张。观测结果确实表明，即使是看似空无一物的空间也携带能量，而这似乎正是推动宇宙加速
膨胀的原因。然而，广义相对论并不能解释这种真空能从何而来；它只能描述如果这种能量存在，它将
对时空产生怎样的影响。相比之下，量子场论——在微观世界同样极为成功的理论——确实提供了一个
机制：来自量子简谐振子的零点能。但问题在于，这种真空能的理论预测值不仅巨大，而且与实际观测
值严重不符。即使在引入合理的能量截止后，理论值仍然比观测值高出约 100个数量级。理论与观测之
间如此巨大的差距，被称为宇宙学常数问题（cosmological constant problem），它仍然是现代物理中最深
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刻的未解之谜之一。尽管本文不会进一步深入讨论这一问题，但我们必须认识到，这里出现的真空能项
并不是某个古怪的细节——它揭示了两个最成功物理理论之间的根本性张力。

接下来，我们转向现代物理学的一个核心概念：对称性 (symmetry)。一个深刻的结果，即诺特定理
(Noether’s theorem)，指出对于作用量的每一个连续对称性，都有一个相应的守恒量。物理定律不随时间
改变，这意味着能量守恒。物理定律在不同方向的参照系下保持不变（各向同性），因此角动量守恒。

对于复标量场，我们可以将场乘以一个恒定相位因子 eiθ 而不改变物理定律。这是场的一种对称性，
称为全局 U(1)对称性 (global U(1) symmetry)，诺特定理告诉我们它导致一个守恒量：荷 (charge)。

为了用粒子的语言来诠释这一点，我们回到产生和湮灭算符。它们让我们能够以粒子态的形式重写
哈密顿量和守恒荷。我们发现该场描述了两种粒子：一种与场 φ 相关，另一种与其复共轭 φ∗ 相关。两
者都具有质量 m，但它们携带相反的荷。这正是我们期望的粒子 –反粒子对 (particle-antiparticle pair)
的结构。

当我们有两个复标量场时，可以将它们组合成一对，称为二重态。这类似于将两个相关的量组合在
一起，以便将它们作为一个整体来研究。这些场所描述的物理规律在一类称为酉变换（特别是 U(2) 群的
变换）下保持不变。这类变换以特定的方式混合两个场，同时保持理论的整体结构不变。

U(2) 群有四个基本组成部分，称为生成元。其中一个对应于电荷的推广形式，类似于单个复标量场
情况下的电荷。另外三个生成元则与一种称为同位旋的对称性有关。这种对称性在数学上类似于角动量，
但它作用于一个抽象的“内部”空间，而不是我们通常的空间。

由于这种对称性，理论预言了四个守恒量。其中一个是推广后的电荷，另外三个代表同位旋在不同
方向上的分量。它们共同反映了系统的内在对称结构。这种结构可用于描述像 K介子这样的实际粒子，
特别是四种自旋为零的K介子：K+、K0、K− 和 K̄0。这些粒子可以被分成若干对，它们在同位旋对称
性下表现为同一系统的不同状态。

这一规律可以从两个场推广到任意数量 n 的复标量场。当我们有 n 个这样的场时，可以把它们排列
成一个列向量，也称为多重态：

Φ =


φ1

φ2
...
φn

 .

描述这一系统的物理定律在一类广泛的变换下保持不变，这些变换以特定方式混合这 n 个场，由酉
群 U(n) 描述。也就是说，这个理论具有全局的 U(n) 对称性。U(n) 群共有 n2 个生成元，每一个都对应
系统的一种连续对称性。这些生成元可以分为两类：

• 其中一个对应于所有 n 个场的整体相位旋转。这是 U(1) 部分的对称性，会产生一个守恒量，类似
于电荷，或在其他情境下类似于重子数。

• 剩下的 n2 − 1 个生成元属于子群 SU(n)，它描述了场之间更复杂的混合方式。这正是我们之前在
双场情形中看到的同位旋对称性的推广。

由于每个生成元都对应一种对称性，根据诺特定理，系统就具有总共 n2 个守恒量。它们反映了理论内在
的丰富结构——即这 n 个场如何通过对称性相互关联并发生作用。

这不仅仅是抽象的数学。一个关键的例子出现在强核力的理论——量子色动力学（QCD）中。在那
里，数字 n = 3 起着核心作用。虽然 QCD 中的场（向量场）不是像我们这里讨论的标量场，但它们仍
然分为三种类型，称为“颜色”（红、绿、蓝），并在 SU(3) 对称性下共同变换。SU(3) 的 32 − 1 = 8 个
生成元对应八种色荷，每一个都关联着一种传递相互作用的粒子——八种胶子。这些胶子传递强相互作
用，将夸克束缚在质子、中子以及其他强子内部。

因此，将场按多重态组织，并由内部对称性支配——这一看似简单的想法，直接引出了描述自然界中
最基本相互作用的数学框架。从这个意义上说，对称性不仅仅是一个指导原则，更是粒子物理学的语言。
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2 符号、约定与预备知识

2.1 符号与约定

• 我们采用自然单位制，其中 h̄ = c = 1。

• 度规张量 η取为 diag(+,−,−,−) 的形式。

• 希腊字母指标（µ, ν, . . .）取值为时空坐标 0, 1, 2, 3，分别对应 (t, x, y, z)。

• 拉丁字母指标（i, j, . . .）表示空间分量 1, 2, 3。

• 我们采用爱因斯坦求和约定：当同一项中有一个上标和一个下标重复出现时，隐含对该指标求和。

2.2 预备知识

• 四向量与度规：
在狭义相对论中，空间与时间统一为四维时空，时间作为第四个坐标。像 (t, x, y, z)或 (E, px, py, pz)

这样的对象被称为四向量，也可简写为 (t, x)和 (E, p)。这些是逆变矢量（具有上标）：xµ = (x0, x1, x2, x3) =

(t, x)，其中粗体表示三维矢量，普通符号表示四维矢量。
度规张量定义了内积的计算方式。在三维欧几里得空间中，度规为 (+,+,+)，因此 x · y = x1y1 +

x2y2 + x3y3。在四维时空中，若采用 (+,−,−,−) 的度规符号，则内积为：

x · y = ηµνx
µyν = x0y0 − x1y1 − x2y2 − x3y3,

其中度规可用于降低指标：xµ = ηµνx
ν，即 x0 = x0，x1 = −x1，等等。

一个关键的例子是达朗贝尔算符：

∂µ∂µ = ∂0∂0 + ∂1∂1 + ∂2∂2 + ∂3∂3 =
∂2

∂t2
−∇2,

其中 ∇2 = ∂2x + ∂2y + ∂2z 是拉普拉斯算符。

• 对易关系与量子力学：
在量子力学中，物理可观测量由算符表示。当一个算符作用在特定状态（称为本征态）上时，结果
是该状态乘以一个数值——即本征值。例如，定态薛定谔方程为：

Ĥ|ψ〉 = E|ψ〉,

其中 Ĥ 是哈密顿算符，E 是态 |ψ〉 对应的能量。
算符通常不对易。两个算符的对易子定义为 [A,B] = AB − BA，用于衡量它们的非对易程度。若
[A,B] 6= 0，则对应的物理量不能同时被精确测量。

算符 A 的厄米共轭（记作 A†）是其复共轭转置。满足 A† = A 的算符称为厄米算符，代表可观
测量。

量子态由右矢 |ψ〉 描述，其对偶为左矢 〈ψ| = |ψ〉†，用于计算内积如 〈φ|ψ〉。

• 量子谐振子：
量子谐振子（QHO）是经典谐振子的量子化版本。求解薛定谔方程可得离散的能级：

En = h̄ω

(
n+

1

2

)
, n = 0, 1, 2, . . .

基态能量为非零的 1
2 h̄ω，这是纯粹的量子效应。

哈密顿量作用在能量本征态 |n〉 上的结果为：

Ĥ|n〉 = En|n〉 = h̄ω

(
n+

1

2

)
|n〉.
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不同能级之间的跃迁由升降算符实现：

â†|n〉 ∝ |n+ 1〉 (升算符),

â|n〉 ∝ |n− 1〉 (降算符).

将降算符作用于基态时结果为零：â|0〉 = 0，表示不存在更低的能量态。

在量子场论中，每个场模式都等效于一个量子谐振子。粒子被视为场的激发态，由 â† 创造。对真
空态进行湮灭的结果为零：â|0〉 = 0，表明无法从真空中移除粒子。

• 狄拉克函数：

狄拉克函数 δ(x) 定义为：

δ(x) =

∞, x = 0,

0, x 6= 0,
且满足

∫ ∞

−∞
δ(x)dx = 1.

它具有筛选性质： ∫ ∞

−∞
f(x)δ(x− a)dx = f(a),

即“提取”出函数 f 在 x = a 处的取值。

�函数的傅里叶积分为：
δ(x) =

1

2π

∫ ∞

−∞
eikxdk.

在三维空间中：δ3(x) = δ(x)δ(y)δ(z)。

3 正则量子化与哈密顿形式

本节我们从复标量克莱因 –戈登场的作用量出发，其形式为：

S[φ(x), φ∗(x)] =

∫
d4xL =

∫
d4x (∂µφ

∗∂µφ−m2φ∗φ)

其中，动力学变量取为复场 φ 及其共轭场 φ∗。我们从拉格朗日密度出发，计算出与 φ 和 φ∗ 相对应
的共轭动量，并通过勒让德变换得到系统的哈密顿量。接着，我们将 φ、φ∗ 以及它们的共轭动量提升为
算符，开始正则量子化过程。通过施加与量子场论一致的等时对易关系，得到了描述该场的算符代数结
构。最后，我们推导出场算符的海森堡运动方程，并验证其能够再现克莱因 –戈登方程。

3.1 φ 和 φ∗ 相对应的共轭动量

拉格朗日密度为：
L = ∂µφ

∗∂µφ−m2φ∗φ.

共轭动量定义为：
π =

∂L
∂(∂0φ)

, π∗ =
∂L

∂(∂0φ∗)
.

利用 ∂µ = ηµν∂ν，计算得：

π =
∂

∂(∂0φ)
(∂µφ

∗ ηµν∂νφ) = ∂µφ
∗ ηµνδν0 = ∂µφ

∗ ηµ0 = ∂0φ∗ = φ̇∗.

同理，
π∗ =

∂

∂(∂0φ∗)
(∂µφ

∗ ηµν∂νφ) = ηµνδµ0 ∂νφ = η0ν∂νφ = ∂0φ = φ̇.

最终得到
π = φ̇∗, π∗ = φ̇
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3.2 克莱因 –戈登场的哈密顿量

已知正则共轭动量，通过勒让德变换得到哈密顿密度：

H = πφ̇+ π∗φ̇∗ − L.

代入 φ̇ = π∗, φ̇∗ = π，并利用拉格朗日密度

L = φ̇∗φ̇−∇φ∗ · ∇φ−m2φ∗φ = ππ∗ −∇φ∗ · ∇φ−m2φ∗φ,

得：
H = ππ∗ + π∗π −

(
ππ∗ −∇φ∗ · ∇φ−m2φ∗φ

)
= π∗π +∇φ∗ · ∇φ+m2φ∗φ.

因此，哈密顿密度为：
H = π∗π +∇φ∗ · ∇φ+m2φ∗φ

总哈密顿量为对空间的积分：

H =

∫
d3xH =

∫
d3x

(
π∗π +∇φ∗ · ∇φ+m2φ∗φ

)

3.3 正侧量子化与海森堡运动方程

在哈密顿形式体系中，时间是系统演化的参数。我们将场 φ(t, ~x)、φ∗(t, ~x) 及其共轭动量 π(t, ~x) =

φ̇∗(t, ~x)、π∗(t, ~x) = φ̇(t, ~x) 提升为算符，并施加等时正则对易关系：

[φ(t, ~x), π(t, ~y)] = iδ(3)(~x− ~y), [φ∗(t, ~x), π∗(t, ~y)] = iδ(3)(~x− ~y),

[φ(t, ~x), π∗(t, ~y)] = 0, [φ∗(t, ~x), π(t, ~y)] = 0.

时间演化由海森堡方程给出：
i
∂

∂t
O(t, ~x) = [O(t, ~x),H],

对于 φ(t, ~x)：

i
∂

∂t
φ(t, ~x) = [φ(t, ~x),H] =

∫
d3y [φ(t, ~x), π(t, ~y)π∗(t, ~y)] =

∫
d3y iδ(3)(~x− ~y)π∗(t, ~y) = iπ∗(t, ~x)

因此
φ̇(t, ~x) = π∗(t, ~x)

对于 π(t, ~x)：

i
∂

∂t
π(t, ~x) = [π(t, ~x),H]

=

∫
d3y [π(t, ~x),∇φ∗ · ∇φ+m2φ∗φ]

=

∫
d3y

[
π(t, ~x),∇(φ∗∇φ)− φ∗∇2φ+m2φ∗φ

]
=

∫
d3y

[
π(t, ~x), φ∗(−∇2 +m2)φ

]
=

∫
d3y φ∗(t, ~y)(−∇2 +m2)[−iδ(3)(~x− ~y)]

= i(∇2 −m2)φ∗(t, ~x)
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因此

iπ̇(t, ~x) = i(∇2 −m2)φ∗(t, ~x) =⇒ π̇(t, ~x) = (∇2 −m2)φ∗(t, ~x)

=⇒ π̇∗(t, ~x) = (∇2 −m2)φ(t, ~x)

由于 φ̇(t, ~x) = π∗(t, ~x)，有

φ̈(t, ~x) = π̇∗(t, ~x)

= (∇2 −m2)φ(t, ~x)

于是
(∂0∂

0 −∇2 +m2)φ(t, ~x) = 0

我们得到作为算符方程的克莱因-戈尔登方程：

(∂µ∂
µ +m2)φ(t, ~x) = 0 .

对 φ∗(t, ~x) 同样成立。

4 哈密顿对角化、场能及两种粒子类型

我们将复标量场 φ(x) 及其共轭场 φ∗(x) 通过傅里叶变换分解为动量模式：

φ(x) =

∫
d3p

(2π)3
1√
2Ep

(
ape

−ip·x + b†pe
ip·x) ,

φ∗(x) =

∫
d3p

(2π)3
1√
2Ep

(
bpe

−ip·x + a†pe
ip·x) .

共轭动量 π(x) 及其共轭 π∗(x) 为：

π(x) =

∫
d3p

(2π)3
(−i)

√
Ep

2

(
bpe

−ip·x − a†pe
ip·x) ,

π∗(x) =

∫
d3p

(2π)3
(−i)

√
Ep

2

(
ape

−ip·x − b†pe
ip·x) .

梯度项 ∇φ(x) 及其共轭 ∇φ∗(x) 为：

∇φ(x) =
∫

d3p

(2π)3
ip√
2Ep

(
ape

−ip·x − b†pe
ip·x) ,

∇φ∗(x) =
∫

d3p

(2π)3
ip√
2Ep

(
bpe

−ip·x − a†pe
ip·x) .

产生和湮灭算符满足正则对易关系：

[ap, a
†
p′ ] = (2π)3δ3(p − p′), [bp, b

†
p′ ] = (2π)3δ3(p − p′),

其余所有对易子均为零。
复标量 Klein-Gordon场的哈密顿量（如前一节所得到）为：

H =

∫
d3x

[
π∗(x)π(x) +∇φ∗(x) · ∇φ(x) +m2φ∗(x)φ(x)

]
.
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我们分别考虑各项。首先，动能项（π∗π）。将 π∗(x) 和 π(x) 代入：

π∗(x)π(x) = −
∫
d3p d3p′

(2π)6

√
EpEp′

4

(
ape

−ip·x − b†pe
ip·x) (bp′e−ip′·x − a†p′e

ip′·x
)

= −
∫
d3p d3p′

(2π)6

√
EpEp′

4

(
apbp′e−i(p+p′)·x − apa

†
p′e

−i(p−p′)·x − b†pbp′ei(p−p′)·x + b†pa
†
p′e

i(p+p′)·x
)
.

对 d3x 积分：∫
d3xπ∗(x)π(x) = −

∫
d3p d3p′

(2π)3

√
EpEp′

4

[ (
apbp′ + b†pa

†
p′

)
δ(3)(p + p′) +

(
−apa

†
p′ − b†pbp′

)
δ(3)(p − p′)

]
= −

∫
d3p
(2π)3

Ep

2

(
apb−p + b†pa

†
−p − apa

†
p − b†pbp

)
.

接下来，我们计算梯度项（∇φ∗ · ∇φ）。代入 ∇φ∗ 和 ∇φ：

∇φ∗(x) · ∇φ(x) =
∫
d3p d3p′

(2π)6
−p · p′

2
√
EpEp′

(
bpe

−ip·x − a†pe
ip·x) (ap′e−ip′·x − b†p′e

ip′·x
)

=

∫
d3p d3p′

(2π)6
−p · p′

2
√
EpEp′

(
bpap′e−i(p+p′)·x − bpb

†
p′e

−i(p−p′)·x − a†pap′ei(p−p′)·x + a†pb
†
p′e

i(p+p′)·x
)
.

对 d3x 积分：∫
d3x∇φ∗(x) · ∇φ(x) =

∫
d3p d3p′

(2π)3
−p · p′

2
√
EpEp′

[ (
bpap′ + a†pb

†
p′

)
δ(3)(p + p′) +

(
−bpb

†
p′ − a†pap′

)
δ(3)(p − p′)

]
=

∫
d3p

(2π)3
p2

2Ep

(
−bpa−p − a†pb

†
−p + bpb

†
p + a†pap

)
.

最后是质量项（m2φ∗φ），代入 φ∗ 和 φ：

m2φ∗(x)φ(x) =

∫
d3p d3p′

(2π)6
m2

2
√
EpEp′

(
bpe

−ip·x + a†pe
ip·x) (ap′e−ip′·x + b†p′e

ip′·x
)

=

∫
d3p d3p′

(2π)6
m2

2
√
EpEp′

(
bpap′e−i(p+p′)·x + bpb

†
p′e

−i(p−p′)·x + a†pap′ei(p−p′)·x + a†pb
†
p′e

i(p+p′)·x
)
.

对 d3x 积分：∫
d3xm2φ∗(x)φ(x) =

∫
d3p d3p′

(2π)3
m2

2
√
EpEp′

[ (
bpap′ + a†pb

†
p′

)
δ(3)(p + p′) +

(
bpb

†
p′ + a†pap′

)
δ(3)(p − p′)

]
=

∫
d3p

(2π)3
m2

2Ep

(
bpa−p + a†pb

†
−p + bpb

†
p + a†pap

)
.

将所有项相加，并利用 E2
p = |p|2 +m2：

H = −
∫

d3p

(2π)3
Ep

2

[
apb−p + b†pa

†
−p − apa

†
p − b†pbp

]
+

∫
d3p

(2π)3
p2

2Ep

[
bpa−p + a†pb

†
−p + bpb

†
p + a†pap

]
+

∫
d3p

(2π)3
m2

2Ep

[
bpa−p + a†pb

†
−p + bpb

†
p + a†pap

]
=

∫
d3p

(2π)3
Ep

2

{[
bpa−p + a†pb

†
−p + bpb

†
p + a†pap

]
−
[
a−pbp + b†−pa

†
p − b†pbp − apa

†
p

]}
=

∫
d3p

(2π)3
Ep

2

(
[bp, a−p] + [a†p, b

†
−p] + bpb

†
p + b†pbp + a†pap + apa

†
p

)
=

∫
d3p

(2π)3
Ep

(
a†pap + b†pbp + (2π)3δ(3)(0)

)
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让我们来理解这一表达式的物理含义。注意到其中最后一项 (2π)3δ(3)(0) 是一个无限大的量（且为
经典的数，即 c数）。这一无穷大能量在实验上无法被直接探测，因为实验测量的总是相对于哈密顿量基
态的能量差。实际上，该项对应于真空能量。因此，在后续计算中，我们将忽略这一项。

H =

∫
d3p

(2π)3
Ep

(
a†pap + b†pbp

)
剩下的项描述了场激发态的能量，下面我们来具体说明这一点。为了理解哈密顿量对粒子态的作用，

我们计算它与产生算符的对易关系。考虑：

[H, a†p] =

∫
d3p′

(2π)3
Ep′ [a†p′ap′ , a†p]

=

∫
d3p′

(2π)3
Ep′a†p′ [ap′ , a†p]

=

∫
d3p′

(2π)3
Ep′a†p′(2π)

3δ(3)(p′ − p)

= Epa
†
p,

因此得到
Ha†p = a†p(H + Ep) .

类似地，对于 b 型产生算符，
Hb†p = b†p(H + Ep) .

我们现在研究哈密顿算符如何作用于粒子态。回顾一下，能量本征值对应系统的能量。同时，我们可
以通过在真空态上作用产生算符来“产生”一个粒子。注意，在移除了零点能之后，哈密顿量满足H |0〉 = 0

—— 这是因为真空态中没有粒子，湮灭算符作用为零：ap |0〉 = bp |0〉 = 0，代入哈密顿量即可验证。
计算单粒子态的能量：

Ha†p |0〉 = a†p(H + Ep) |0〉 = a†pEp |0〉 = Ep a
†
p |0〉 ,

Hb†p |0〉 = b†p(H + Ep) |0〉 = b†pEp |0〉 = Ep b
†
p |0〉 .

由此可见，两个态 a†p |0〉 和 b†p |0〉 都是哈密顿量的本征态，对应的能量均为 Ep。这表明，由 a†p 和
b†p 产生的两类粒子具有相同的能量，但代表不同的粒子，它们在量子数（如电荷）上可能不同，但在能
量-动量关系上完全相同。

5 电荷算符与粒子态的电荷

我们从一个守恒的算符，电荷算符，开始。其定义为：

Q =

∫
d3x

i

2
(φ∗π∗ − πφ) .

该表达式的推导将在下一节中讨论。目前，我们先接受这一形式，并继续将 Q 用产生和湮灭算符表示出
来。为了用产生和湮灭算符来表示 Q，我们将 φ(x)、φ∗(x)、π(x) 和 π∗(x) 的傅里叶展开式代入 Q 的定
义中。我们首先计算积分项

∫
d3xφ∗π∗：

φ∗π∗ =

∫
d3p d3p′

(2π)6
−i
2

√
Ep′√
Ep

(
bpe

−ip·x + a†pe
ip·x) (ap′e−ip′·x − b†p′e

ip′·x
)

=

∫
d3p d3p′

(2π)6
−i
2

√
Ep′√
Ep

[
bpap′e−i(p+p′)·x − bpb

†
p′e

−i(p−p′)·x + a†pap′ei(p−p′)·x − a†pb
†
p′e

i(p+p′)·x
]
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于是: ∫
d3xφ∗π∗ =

∫
d3p d3p′

(2π)3
−i
2

√
Ep′√
Ep

[
(bpap′ − a†pb

†
p′)δ

(3)(p + p′) + (a†pap′ − bpb
†
p′)δ

(3)(p − p′)
]

=

∫
d3p

(2π)3
−i
2

(
bpa−p − a†pb

†
−p + a†pap − bpb

†
p

)
接下来，我们以同样的方式计算另一项

∫
d3xπφ:

πφ =

∫
d3p d3p′

(2π)6
−i
2

√
Ep√
Ep′

(
bpe

−ip·x − a†pe
ip·x) (ap′e−ip′·x + b†p′e

ip′·x
)

=

∫
d3p d3p′

(2π)6
−i
2

√
Ep√
Ep′

[
bpap′e−i(p+p′)·x + bpb

†
p′e

−i(p−p′)·x − a†pap′ei(p−p′)·x − a†pb
†
p′e

i(p+p′)·x
]

于是: ∫
d3xπφ =

∫
d3p d3p′

(2π)3
−i
2

√
Ep√
Ep′

[
(bpap′ − a†pb

†
p′)δ

(3)(p + p′) + (bpb
†
p′ − a†pap′)δ(3)(p − p′)

]
=

∫
d3p

(2π)3
−i
2

(
bpa−p − a†pb

†
−p + bpb

†
p − a†pap

)
现在，我们将这两部分的结果合并，代入电荷算符 Q 的表达式中：

Q =

∫
d3x

i

2
(φ∗π∗ − πφ)

=
1

4

∫
d3p

(2π)3

[(
bpa−p − a†pb

†
−p + a†pap − bpb

†
p

)
−
(
bpa−p − a†pb

†
−p + bpb

†
p − a†pap

)]
=

1

2

∫
d3p

(2π)3
(
a†pap − bpb

†
p
)

=
1

2

∫
d3p

(2π)3
(
a†pap − b†pbp + [b†p, bp]

)
与哈密顿算符的情况类似，当我们对电荷算符进行正规排序时，由于对易子 [bp, b

†
p] 产生了一个无限

大的常数项。这个无限大的真空电荷可以通过重新定义电荷算符来消除，即我们只保留其正规排序后的
形式。因此，正规排序后的电荷算符为：

Q =
1

2

∫
d3p

(2π)3
(a†pap − b†pbp)

为了理解该算符的物理意义，我们接下来研究它如何作用于粒子态。为此，我们首先需要计算电荷
算符与产生算符之间的对易关系。

[Q, a†q] =
1

2

∫
d3p

(2π)3
[a†pap, a

†
q]

=
1

2

∫
d3p

(2π)3
a†p[ap, a

†
q]

=
1

2

∫
d3p

(2π)3
a†p(2π)

3δ(3)(p − q) = 1

2
a†q

[Q, b†q] = −1

2

∫
d3p

(2π)3
[b†pbp, b

†
q]

= −1

2

∫
d3p

(2π)3
b†p[bp, b

†
q]

= −1

2

∫
d3p

(2π)3
b†p(2π)

3δ(3)(p − q) = −1

2
b†q
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将上述两个结果重新整理，我们得到：

Qa†q = a†q

(
Q+

1

2

)

Qb†q = b†q

(
Q− 1

2

)
利用 ap|0〉 = bp|0〉 = 0 这一性质，我们可以首先确定真空态的电荷。由于湮灭算符作用于真空态为

零，真空态是电中性的：

Q|0〉 = 1

2

∫
d3p

(2π)3
(a†pap − b†pbp)|0〉 = 0

基于这些关系，我们现在可以考察电荷算符在单粒子态 a†p|0〉 和 b†p|0〉 上的作用效果：

Qa†p|0〉 = a†p

(
Q+

1

2

)
|0〉 = a†p

(
1

2

)
|0〉 = 1

2
a†p|0〉

Qb†p|0〉 = b†p

(
Q− 1

2

)
|0〉 = b†p

(
−1

2

)
|0〉 = −1

2
b†p|0〉

从上述计算可以看出，a†p 算符产生一个电荷为 +1/2 的粒子，而 b†p 算符则产生一个电荷为 −1/2 的
粒子。这表明 a†p 和 b†p 分别是粒子和其反粒子的产生算符。

6 单个、两个及多个复标量克莱因-戈尔登场的对称性性质与守恒量

本节将系统地研究一个、两个及多个复标量克莱因-戈尔登场所对应的守恒流。

6.1 单个复标量克莱因-戈尔登场

在上一节中，我们讨论了单个复克莱因-戈尔登场，并验证了某一表达式代表一个守恒量——电荷。
这里，我们不再直接给出结果，而是从第一性原理出发，进行详细推导。

利用诺特定理，我们证明了拉氏量在场的全局 U(1)变换下保持不变。该对称性意味着存在一个守恒
的诺特电流——一个四维电流，其时间分量对应一个守恒的电荷。我们将其识别为电荷，并重现之前得
到的表达式，同时明确它与基本对称性的联系。

考虑场的全局 U(1) 变换：

φ→ φ′ = φe−
i
2 θ, φ∗ → φ∗′ = φ∗e+

i
2 θ

该变换下，拉氏量变为：

L(φ′) = ∂µ(φ
∗e+

i
2 θ) ∂µ(φe−

i
2 θ)−m2(φ∗e+

i
2 θ)(φe−

i
2 θ)

= ∂µφ
∗∂µφ−m2φ∗φ = L(φ)

因此，拉氏量在全局 U(1) 变换下保持不变。
为应用诺特定理，我们将变换在 θ � 1 时展开到一阶：

φ′ = φe−
i
2 θ ≈ φ(1− i

2
θ) ⇒ ∆φ = − i

2
θφ

φ∗′ = φ∗e+
i
2 θ ≈ φ∗(1 +

i

2
θ) ⇒ ∆φ∗ = +

i

2
θφ∗

诺特定理告诉我们，与此对称性相关的守恒电流为：

jµ(x) =
1

θ

(
∂L

∂(∂µφ)
∆φ+

∂L
∂(∂µφ∗)

∆φ∗
)
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代入变分和拉氏量的导数，得到：

jµ = (∂µφ∗)(iθφ) + (∂µφ)(−iθφ∗) = i

2
[(∂µφ)φ∗ − (∂µφ∗)φ]

守恒电荷为其时间分量在空间上的积分：

Q =

∫
d3x j0(x) =

∫
d3x

i

2

[
(∂0φ)φ∗ − (∂0φ∗)φ

]
回忆对 φ 的正则共轭动量为 π = ∂0φ∗，对 φ∗ 的共轭动量为 π∗ = ∂0φ，则表达式写为：

Q =

∫
d3x

i

2
[π∗φ∗ − πφ]

这与之前看到的守恒量完全相同——只是多了一个无穷大。它对应电荷，现在通过拉氏量的 U(1) 对称
性结合诺特定理直接导出。额外的无穷项反映了场论中常见的问题：守恒电荷中包含无穷大的真空贡献。
物理上有意义的结果来自于减去这部分无穷或通过适当的重整化处理，从而得到有限且定义良好的电荷。

6.2 两个复标量克莱因-戈尔登场

我们现在考虑两个复克莱因-戈登场 φ1 和 φ2 的情形，它们具有相同的质量 m。拉格朗日密度由两
个单场拉格朗日的和给出：

L = ∂µφ
∗
1 ∂

µφ1 −m2φ∗1φ1 + ∂µφ
∗
2 ∂

µφ2 −m2φ∗2φ2.

为了更简洁地表达这个拉格朗日量并揭示体系的对称性，我们可以将这两个场合并为一个场双重态：

Φ =

(
φ1

φ2

)
, Φ† = (φ∗1, φ

∗
2).

用这个双重态表示时，拉格朗日密度具有如下优雅形式：

L = ∂µΦ
† ∂µΦ−m2Φ†Φ.

这种简洁形式使得拉格朗日在某些变换下的不变性变得显而易见。具体而言，拉格朗日在全局 U(2)变换
下保持不变，其中 Φ → UΦ，而 U 是任意常数的 2× 2 幺正矩阵（满足 U†U = I）。这种不变性可由以
下方式显式展示：

L(Φ) → L(UΦ) = ∂µ(UΦ)† ∂µ(UΦ)−m2(UΦ)†(UΦ)

= ∂µΦ
†U†U ∂µΦ−m2Φ†U†UΦ

= ∂µΦ
† ∂µΦ−m2Φ†Φ = L(Φ).

群 U(2) 包含所有 2× 2 的幺正矩阵。作为一个群，它可以表示为一个商群：

U(2) ∼=
SU(2)× U(1)

Z2
.

这意味着 U(2) 同构于 SU(2) × U(1) 模掉一个 Z2 等价关系。这个商群的原因在于，将 SU(2) 或
U(1)的元素同时乘以 −1会得到 U(2)中的同一个元素。这种二对一的映射意味着 SU(2)×U(1)是 U(2)

的双覆盖。
然而，在应用诺特定理时，我们关注的是无穷小变换，它们由李代数控制。李代数 u(2) 的结构更简

单，可分解为如下的直和形式：u(2) = su(2)⊕ u(1)

这个代数具有四个实维度，对应于四个生成元。通常，u(1) 的生成元取为单位矩阵 I，而 su(2) 的三
个生成元是泡利矩阵 σi。这种在代数层面的直和结构非常关键：它意味着存在四个独立的连续对称性。

由于拉格朗日在全局 U(2) 变换下保持不变，诺特定理告诉我们存在四个对应的守恒流 —— 每个生
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成元对应一个。一个无穷小的 U(2) 变换可以表示为：

U = e−iεT = 1− iεT

其中 T 是四个厄米生成元之一。在此变换下，

Φ → UΦ = (1− iεT ) =⇒ ∆Φ = −iεTΦ =⇒ ∆Φ† = iεΦ†T

根据诺特定理，与该对称性对应的守恒流 jµ 表达为：

jµ =
1

ε

(
∂L

∂(∂µΦ)
∆Φ+∆Φ† ∂L

∂(∂µΦ)†

)
注意这里的诺特流表达式与标准形式略有不同：第二项中项的顺序被交换了。这是由于变量选择导致的。
如果你定义变量为 Φ 和 Φ∗（复共轭而非厄米伴随），那么标准的诺特流表达式可以直接使用。然而，如
果你将 Φ 和 Φ†（厄米伴随）视为独立变量，就会出现问题：Φ 是列向量，而 Φ† 是行向量。结构上的不
匹配意味着直接套用标准公式会得到矩阵值表达式，而非标量，这与守恒流的定义不符。为了保持标量
结构，第二项的顺序必须调整——实际上是插入了一个转置操作——使所有项都成为正确的内积。

为了构造这个流，我们首先计算拉格朗日密度所需的导数：

∂L
∂(∂µΦ)

= (∂µΦ)† and ∂L
∂(∂µΦ)†

= ∂µΦ.

将这些导数以及场的变分 ∆Φ = −iεTΦ和 ∆Φ† = iεΦ†T 代入诺特公式，得到四个守恒流的一般表达式：

jµT = (∂µΦ)†(−iTΦ) + (iΦ†T )(∂µΦ)

相关的守恒荷 QT 是守恒流时间分量 j0T 在空间上的积分：

Q =

∫
d3x j0

=

∫
d3x

[
(∂0Φ)†(−iTΦ) + (iΦ†T )(∂0Φ)

]
=

∫
d3x i

[
Φ†T (∂0Φ)− (∂0Φ†)TΦ

]
=

∫
d3x i

[
(Φ∗)TTΠ∗ −ΠTTΦ

]
=

∫
d3x i [φ∗aTabπ

∗
b − πaTabφb]

其中在最后一步我们使用了以下关系：

π = φ̇∗, π∗ = φ̇ =⇒ Π = Φ̇∗, Π∗ = Φ̇

现在让我们更详细地讨论每个守恒荷。首先，考虑 U(1) 的生成元：T = 1
2I

Q =

∫
d3x

i

2
[φ∗aπ

∗
b − πaφb]

这正是上一节结果的推广，代表粒子的电荷。
接下来，考虑 SU(2) 的生成元：T i = 1

2σ
i，得出另外三个守恒量：

Q =

∫
d3x

i

2

[
φ∗aσ

i
abπ

∗
b − πaσ

i
abφb

]
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为了确定守恒荷的代数，我们从复标量场 φa 及其共轭动量 πa 的正则对易关系开始[φa(x), πb(y)] = iδabδ
(3)(x − y)

[φ∗a(x), π∗
b (y)] = iδabδ

(3)(x − y)

因此，两个荷算符 QA 和 QB 之间的对易子为：

[QA, QB ] = −
∫
d3x d3y

{[
φ∗a(x)(TA)abπ

∗
b (x), φ∗c(y)(TB)cdπ

∗
d(y)

]
−
[
φ∗a(x)(TA)abπ

∗
b (x), πc(y)(TB)cdφd(y)

]
−
[
πa(x)(TA)abφb(x), φ∗c(y)(TB)cdπ

∗
d(y)

]
+
[
πa(x)(TA)abφb(x), πc(y)(TB)cdφd(y)

]}
将正则对易关系代入 [QA, QB ] 的表达式，并利用狄拉克 δ函数的性质对 y 积分，该表达式简化为：

[QA, QB ] = −
∫
d3x d3y

{
φ∗c(y)(TB)cd iδad δ

(3)(x − y)(TA)abπ
∗
b (x)

− φ∗a(x)(TA)ab iδbc δ
(3)(x − y)(TB)cdπ

∗
d(y)

− πc(y)(TB)cd iδad δ
(3)(x − y)(TA)abφb(x)

+ πa(x)(TA)ab iδbc δ
(3)(x − y)(TB)cdφd(y)

}
= −

∫
d3x

{
φ∗c(x)(TB)ca i(T

A)abπ
∗
b (x)− φ∗a(x)(TA)ab i(T

B)bdπ
∗
d(x)

− πc(x)(TB)ca i(T
A)abφb(x) + πa(x)(TA)ab i(T

B)bdφd(x)
}

= i

∫
d3x

{
φ∗a[T

A, TB ]abπ
∗
b − πa(x)[TA, TB ]abφb

}
这一结果表明，两个荷的对易子本身也是一个守恒荷，对应于新的生成元 [TA, TB ]。这一结构意味

着守恒荷在对易运算下封闭，并形成一个与生成元 TA 的代数相同的李代数。
对于 SU(2) 理论，其生成元正比于泡利矩阵 T j = 1

2σ
j，该代数即为熟悉的 su(2) 李代数：

[T j , T k] = iεjklT l

将生成元代数代回电荷对易子的最终表达式后，我们得到电荷本身的代数：

[Qj , Qk] = iεjklQl

这一关键结果表明，与非阿贝尔对称性相关的守恒荷彼此不对易，而是构成一个与底层对称性生成元代
数相同的李代数。

对于两个复标量场模型，这种内部 SU(2)对称性被称为同位旋，电荷 Q1, Q2 和 Q3 即为其三个分量
的算符。该框架在描述介子（如K介子）时具有直接的物理实现。四个自旋为 0的K介子（K+,K0,K−, K̄0）
被组织成同位旋二重态，为受上述代数支配的物理系统提供了具体的实例。

6.3 多个复标量克莱因-戈尔登场

前面两个小节的分析可以被直接推广到包含 n 个具有相同质量 m 的复标量场的情形。其核心思想
和数学步骤与 n = 2 的情况完全类似。

首先，我们将 n 个场组合成一个 n 分量列向量，或称多重态 (multiplet) Φ。系统的拉格朗日量具有
与之前完全相同的紧凑形式：

L = ∂µΦ
† ∂µΦ−m2Φ†Φ.
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该拉格朗日量具有全局 U(n) 对称性，在变换 Φ → UΦ（其中 U 是任意 n× n 幺正矩阵）下保持不变。
根据诺特定理，这一连续对称性对应 n2 个守恒荷，因为李代数 u(n) 有 n2 个生成元 TA。通过与

n = 2 情形完全相同的推导，与每个生成元 TA 相关联的守恒荷 QA 的表达式为：

QA =

∫
d3x i

[
φ∗a(Tab)

Aπ∗
b − πa(Tab)

Aφb
]
.

最关键的结果是，这些荷算符所满足的代数结构也直接从 n = 2 的情况推广而来。两个荷的对易子
的计算过程完全相同，其最终结果依然是荷的代数与生成元的代数同构。若生成元满足李代数：

[TA, TB ] = ifABCTC ,

其中 fABC 是群的结构常数 (structure constants)，那么守恒荷算符也必定满足同样的代数关系：

[QA, QB ] = ifABCQC .

这一普适原理是内部对称性在量子场论中最深刻的体现之一。它表明，场的对称性结构被完整地映射到
了由守恒的可观测量（荷）构成的代数上。

这一框架不仅具有理论上的优雅性，也构成了粒子物理标准模型的核心。特别地，n = 3 的情形对应
于 SU(3) 对称性，它正是描述强相互作用的量子色动力学 (Quantum Chromodynamics, QCD) 的基础。
在该理论中，三种“颜色”的夸克构成了一个三重态，而它们之间通过交换 8种胶子（对应 SU(3)的 8个
生成元）进行相互作用。
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