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ABSTRACT

This summary presents a modern formulation of classical electromagnetism grounded in the action prin-
ciple. Beginning with the Lagrangian density that incorporates the electromagnetic field strength tensor, we
introduce the action formalism in the context of field theory. The equations of motion for the electromagnetic
field are Maxwell’s equations. Two of these can be directly derived from the principle of least action applied
to the Lagrangian, offering an elegant and natural connection between variational principles and physical laws.
The remaining two equations are automatically satisfied as a consequence of the definition of the electromag-
netic field tensor.

The symmetries of the action are examined through Noether’s theorem, which demonstrates that conserva-
tion of energy and momentum arises from the invariance of the action under spacetime translations. We proceed
to derive the electromagnetic energy—momentum tensor and interpret its physical components, including the en-
ergy density and the Poynting vector. This approach unifies the dynamical equations and conservation laws of
electromagnetism within a coherent Lagrangian framework, effectively bridging classical electrodynamics and
modern theoretical physics.

Keywords: Classical Electromagnetism, Action Principle, Lagrangian Density, Field Theory, Maxwell’s Equations, Euler—Lagrange
Equations, Noether’s Theorem, Energy—Momentum Tensor, Poynting Vector.

I. NOTATIONS AND CONVENTIONS

¢ We work in natural units, where e = pop = c = 1.

 The metric tensor is taken to be of the form diag(+, —, —, —).

* Greek indices (i, v, . .. ) run over the spacetime coordinates 0, 1, 2, 3, corresponding to (¢, z,y, z).
* Roman indices (7, j, . . . ) denote the spatial components 1,2, 3.

¢ We employ the Einstein summation convention: repeated indices, one upper and one lower, are implicitly summed
over.

II. PRELIMINARY: THE ACTION PRINCIPLE

The action principle lies at the heart of modern theoretical physics and has its roots in the work of pioneering figures such
as Pierre Maupertuis and Leonhard Euler in the 18th century, later refined by William Rowan Hamilton and Carl Jacobi. It
offers a profound and elegant framework in which the dynamics of both particles and fields can be derived from a single scalar
quantity: the action. By demanding that the action be stationary under small variations—a concept known as Hamilton’s
principle—one can obtain the equations of motion for a wide range of physical systems. This variational approach not only
unifies classical mechanics, electromagnetism, general relativity, and quantum field theory under a common formalism but also
naturally encodes symmetries and conservation laws through Noether’s theorem. As such, the action principle stands as one of
the most powerful and unifying concepts in all of physics.
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A. Action and Lagrangian

The action is defined as the integral of a function known as the Lagrangian over time:

st = [ Lig.qn

t1
where q(t) represents the generalized coordinates describing the configuration of the system, ¢ denotes their time derivatives,
and t is time. The Lagrangian L is chosen to reflect the physical properties of the system, typically depending on position,
velocity, and possibly time explicitly.

The action S plays a foundational role in determining the evolution of a system. Among all possible paths that a system
could take between two fixed configurations, only one corresponds to the actual physical motion. This path is determined by
requiring that the action be stationary under small variations, a condition known as the principle of stationary action.

In extending this formalism from particles to fields, the idea of the action is generalized naturally. Instead of functions
of time alone, we consider quantities that vary over spacetime. In field theory, the dynamical object is no longer a set of
coordinates ¢(¢), but a field ¢(z"), where * = (t,x,y, z) labels points in spacetime. The Lagrangian is replaced by a
Lagrangian density £, and the action becomes an integral over four-dimensional spacetime:

Sl = /£(¢, Oup, a*) d*x

This formulation allows for a consistent description of systems with infinitely many degrees of freedom—such as electro-
magnetic or quantum fields—while preserving the elegance and generality of the variational principle.

B. Equations of Motion: Euler-Lagrange Equations

To determine the dynamics of the field, we apply the principle of stationary action: the physical configuration of the field is the
one that makes the action S[¢] stationary under small variations d¢(z" ), subject to the condition that the variation vanishes at
the boundaries of the spacetime region under consideration:

0S5 =0 subject to the boundary condition d¢(x 0,

|b0undary
We compute the variation of the action:
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For the action to be stationary for arbitrary variations d¢ (that vanish at the boundary), the integrand must vanish identi-

cally:
(i) o
"\o(Oue)) 00

These are the Euler—Lagrange equations for classical fields. They provide the equations of motion governing the dynamics
of the field ¢(x*), derived directly from the Lagrangian density via the variational principle.

)

C. Noether’s Theorem and Conservation Laws

Noether’s theorem provides a powerful and elegant method for deriving conservation laws in classical field theory from con-
tinuous symmetries of the action. It plays a central role in modern theoretical physics, revealing the deep relationship between
invariance principles and conserved quantities.

Let us consider a general infinitesimal transformation of the fields of the form:

¢(z) = ¢'(2) = p(z) + alp(x),
where « is an infinitesimal parameter and A¢(z) is some function of the field and its derivatives. This transformation is

said to be a symmetry of the theory if the action remains invariant under the transformation, or more generally, if the change
in the action is a boundary term that does not affect the equations of motion.
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The corresponding change in the Lagrangian density is:

oL oL
AL = %A‘ﬁ + mau(A@
oL oL oL
= O (am) M) * {a? ~ O (a@w” ae
oL
= O (a«w) M’)

Now suppose that the transformation is a symmetry of the theory. In that case, the change in the Lagrangian must also be
expressible as a total derivative:
AL =0,T",
for some function 7*. Equating the two expressions for AL, we find:

oL AN
8“(WA¢”‘>—°

This implies that the quantity:

oL
" i
= Ap—T
A(9u)
is a conserved current, satisfying the continuity equation:
9,5" = 0.

This is precisely Noether’s theorem: for every continuous symmetry of the action, there exists a corresponding conserved
current. Let us apply this result to the case of spacetime translations. Consider an infinitesimal translation:

= ™ =" — a”,
where a" is a constant infinitesimal vector. Under this transformation, the field changes as:

¢(z) = ¢'(2) = p(z + a) = p(2) + a" (),

so that:

Ad =a"d,¢.

Similarly, the Lagrangian transforms as:

L(z) = L(z+a) = L(z) + a” 0. L(x),

which implies:

AL =a"0,L = 8,(a"6",L) = 8, (a" L) = 9, T",

Substituting into the expression for the Noether current:

oL oL
" = G0 = (G0 - ).
5(0,) " 5(0u5)
We define the energy-momentum tensor 7%, by:
oL
b, = ——=0,¢— L3",
50,0

Then the current becomes:

gt =a"T",.

Since 0,,j" = 0, and a” is arbitrary, we conclude that:

8. T",, = 0.

This is the local conservation law for energy and momentum. The tensor 7" encodes the energy density, momentum
density, and stress in the field, and its conservation is a direct consequence of the invariance of the action under spacetime
translations.
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III. PRELIMINARY: CLASSICAL ELECTRODYNAMICS

Classical electrodynamics is a fundamental field theory that describes the dynamics of electric and magnetic fields. In the
absence of charges and currents the electromagnetic field evolves autonomously, governed entirely by its internal structure
and conservation laws. We review Maxwell’s equations in vacuum and recap how energy is stored and transported in the
electromagnetic field.

A. Maxwell’s Equations in Vacuum

The four fundamental equations of classical electrodynamics in vacuum are:

V-E=0
V-B=0
0B
E=—
V x o
OE
B=—"—
V x 9

We work in natural units, where eg = po = 1. These constants are absorbed into the definitions of the fields, simplifying
the form of the equations while preserving all physical content.
Each of these equations has a distinct origin and interpretation:

* The equation V - E = 0 is Gauss’s law in vacuum with no electric charges. Electric field lines have no sources or sinks
and must form closed loops or extend to infinity.

e The equation V - B = 0 is the magnetic version of Gauss’s law. It reflects the absence of magnetic monopoles:
magnetic field lines are continuous and never begin or end.

e The equation V x E = —0,B is Faraday’s law. It states that a changing magnetic field induces a circulating electric
field.

e The equation V x B = O:E is Ampere’s law with Maxwell’s correction. It shows that a changing electric field
generates a magnetic field. 0:E is the displacement current, added by Maxwell to ensure consistency with charge
conservation.

Together, these equations describe a fully consistent, dynamically closed system for the electric and magnetic fields in
vacuum. They predict the existence of self-sustaining electromagnetic waves, although we will not explore their derivation
here.

B. Energy Density and the Poynting Vector

Even in the absence of sources, the electromagnetic field itself carries energy and transports it through space. Two key
quantities describe this aspect of the field:

» The energy density, denoted £, represents the amount of energy per unit volume stored in the electromagnetic field.

¢ The Poynting vector, denoted S, gives the directional flow of electromagnetic energy.

They are defined as:

_1 2 2
=5 (E +B?),
S=E x B.

To understand the physical meaning of these expressions, consider the time derivative of the energy density:

o0& oE oB
a B By

=E- (VxB)-B:(VxE)
Applying a standard vector identity and rearranging terms yields:

o€
— +V-S=0.
ot
This is the Poynting theorem in vacuum. It expresses the local conservation of electromagnetic energy: the rate of change

of energy density in a region is balanced by the net outward flux of the Poynting vector through the boundary of that region.
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IV. THE ACTION PRINCIPLE IN SOURCELESS CLASSICAL ELECTRODYNAMICS

Here, we apply the variational principle to sourceless (vacuum) electromagnetism. We begin by deriving Maxwell’s equations
from an action built out of the electromagnetic field strength tensor. Then, we construct the energy—momentum tensor of the
electromagnetic field and show how it leads naturally to expressions for energy density and the Poynting vector.

A. Deriving Maxwell’s Equations from the Action

In the source-free case, the dynamics of the electromagnetic field are governed by the vector potential A, (z), a four-vector
field whose derivatives define the electromagnetic field strength:

Fuy = 0,A, — 0,A,

This antisymmetric tensor F},, contains all components of the electric and magnetic fields and transforms covariantly
under Lorentz transformations, ensuring relativistic invariance.
The simplest scalar we can construct from F),, is the contraction F},, F'*”. This leads naturally to the following action

for the electromagnetic field:
4 1 i
S[A]= [ d°z _ZF‘“’F

This form of the action is chosen because it is:

* Lorentz-invariant. It’s built from a scalar formed from tensors,
* Local. It depends only on fields and their first derivatives at each spacetime point,

* Hindsight. The factor of —1/4 is added so it leads to the results of classical electrodynamics, as we shall see.

The Lagrangian of the system is therefore:

1
L= FuF"

We apply the Euler-Lagrange equations. Note that the Lagrangian contains no explicit dependence on Ag.
9 oL _oc
T 7\ 0(0.4p) 0Ap

=2 (5

_ 1, ( 0 (OpAu — 0,4, (9" A” — 8”A“)J)

4 0(0aAp)
. (ﬁ (9 Ay — 0, A,) (D As — agAm)
_ Ly, ((auA,, = 0uA,) gy (025 = 05A) (0245 = 050) G s (0 é%Au))
= 0 ((0uAy — 0, A (65367 — 0502) + (0, A5 — 05 A,) (8367 — 6257 )

1

=40 ((%Au — 0 AL (10" = nPn") + (95 As — 95 AL) (™ — n‘”n“‘s))
= —0,(0"A% — 9" A%)
= 0o F*?

Relabeling indicies, we obtain:

Note that p is the free index in this expression. In addition, we make use of the antisymmetry property of the field tensor
(FH =0, if p=v).

e Case p=0:

0=08,F" =8;F = —9,F’ = -V -.E —>
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* Case =1
0=09,F"
= QF" +0,FY
= QE' — 779, By

=E' - (VxB) = VXB:%—]?

The variational principle gives us one tensor equation, which corresponds to two of Maxwell’s equations when decom-
posed into spatial and temporal components. The other two equations arise not from the action, but from the definition of the
field strength tensor and the associated Bianchi identity.

OnFuv + OuFux + 0.Fu = 0.

F,,, is antisymmetric, so this cyclic sum vanishes identically. Specialising to particular choices of indices yields the
remaining two Maxwell equations.
B. Energy-Momentum Tensor, Energy Density, and Poynting Vector
As mentioned in the preliminary section, the energy-momentum tensor is defined as:

oL

™, = ———08,A, — 0L
90, A,)
And we have calculated already that
oL
_ 9%  _ _pm
90, A-)

We first obtain the energy—momentum tensor in mixed form, and then raise its indices to express it in fully contravariant
form.

1
™, = —F"9,A, + Zé“uFagFaﬁ

1
T = —F"9" A, + Zn‘“’FaBF“B

However, this energy—momentum tensor is not symmetric: 7" 2 T"*. The asymmetry comes from the term —F*79" A,
which is not invariant under exchanging 1 and v due to the vector nature of A,,.

Symmetry is essential because the energy—momentum tensor couples to the symmetric metric in general relativity, and it
must also ensure conservation of angular momentum. To fix this, we add a term 9 (F* )‘A”). This term is antisymmetric, and
therefore is automatically divergenceless.

TH =T + 0\ (F"* AY)
= —F"Q A, + inﬂ”FaﬁFW + O\ (FMNAY + FF 95 AY
= —F"3 A, + in‘“’FagFaB + F*9, A"

1
= 7F‘U')\(9VA,\ + F"LAa)\AU + EU#VFaﬂFQﬁ

1
= —FHXFU,\ + Z’I]”“FQBFQIE

This tensor is symmetric, as the product of two electromagnetic field tensor (which is antisymmetric) will result in a
symmetric tensor. Most importantly, this is an equally valid energy-momentum tensor, yielding the same globally conserved
energy and momentum. Let us now examine its energy density, given by £ = T°°, as well as the Poynting vector, which
represents the momentum density.

For ease of calculation, we lower the index for the mixed tensor.

A 1
T = F* Fy, + Zn“”FaﬁF“ﬁ

Recall that the components of the electromagnetic field tensor are given by:

FO _Ei7 Fii— _EijkBk

Note that lowering the indexes for the field tensor may yield an additional negative sign. It is important here to distinguish
between 3-tensors and 4-tensors. Objects in 3D space (electric field and magnetic field) use the Euclidean “+++” metric,
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so their covariant and contravariant components are identical. In contrast, tensors in 4D spacetime (like the electromagnetic
tensor) use the “+—"" metric, so lowering any spatial index introduces a negative sign.

FUP = naonpiFOi — [y, = —FOi
o=0, p=1 o=0, p=1
E'=E;
Foi = B
And similarly,
Fsp = Noinos F' — Fy;=F"
o=i, p=j o=i, p=j

SijkBk = EijkBk
Fyj = —eiju B
We begin by computing the energy density of the field, corresponding to the component ;x = v = 0:
£ — 0o
1
— npOFO/\F)\p + Z"’]OOFOABFQB

= F"Fio + l(FioFiO + FyFY + Fo; F*7)

4
. 1 ) - .
= (E)(=E) + J[-EE + (—eignB") (="' By) + (—E;)(E7)]
1. 1
= 5 B'Ei + 1(252)3’“31
1

2 2
Next, we calculate the Poynting vector, corresponding to the component 4 = 0, v = m:
Sm — T()m
m 1 m [e]

=" FFy, + Z"O FopF?

= —F"Fim

= —EimkEin

=(ExB)™

These results match the expressions for the electromagnetic field energy density and Poynting vector given in the previous
section. We have therefore successfully formulated a description of electromagnetism starting from the action principle.
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